

# **1×N MEMS Optical Switch Module**

#### **Description**

## (MEMS SMOSM)

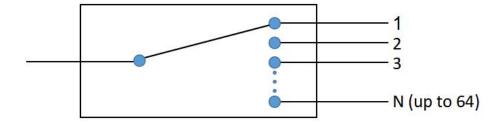
The 1xN MEMS SM optical switch module is an advanced microelectromechanical system (MEMS) optical device that features high-speed operation, low insertion loss, and high stability. It is capable of receiving a single input light signal and accurately distributing it to N independent output ports. The module is designed compactly and operates rapidly, completing light signal switching in the millisecond range, with extremely low insertion loss, thus enhancing the overall efficiency of the system. Moreover, it supports remote control and can flexibly configure the optical path through external signals, making it suitable for

#### **Key Features**

applications such as data centers, optical communication networks, and scientific research experiments.

- Mini Size
- Fast Switching Time

### **Applications**


- Low Insertion Loss
- Enhanced Reliability and Exceptional Stability
- Metropolitan Area Network
- Data Center

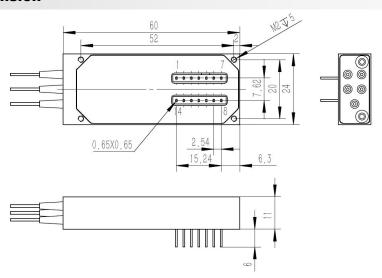
#### **Follow the Standards**

- Fiber Optic Sensing and Monitoring
- Instruments
- Telcordia GR-1221

#### **Optical Path Diagram**

Telcordia GR-1073






## **Specifications**

| Туре                        |            | 1×N (N≤64) MEMS SMOSM         |      |     |      |      |      |      |
|-----------------------------|------------|-------------------------------|------|-----|------|------|------|------|
| Parameter                   | Unit       | 1×2                           | 1×4  | 1×8 | 1×16 | 1×32 | 1×48 | 1×64 |
| Center Wavelength           | nm         | 1310/1550/1625/1650           |      |     |      |      |      |      |
| Insertion Loss              | dB         | ≤0.6                          | ≤0.8 |     | ≤1.0 | ≤1.2 | ≤1   | .8   |
| Wavelength Dependent Loss   | dB         | ≤0.3                          |      |     |      |      |      |      |
| Temperature Dependent Loss  | dB         | ≤0.4 (2≤N≤16), ≤0.6 (18≤N≤64) |      |     |      |      |      |      |
| Polarization Dependent Loss | dB         | ≤0.2                          |      |     |      |      |      |      |
| Return Loss                 | dB         | ≥50                           |      |     |      |      |      |      |
| Cross Talk                  | dB         | ≥50 (2≤N≤32), ≥45 (33≤N≤64)   |      |     |      |      |      |      |
| Repeatability               | dB         | ≤0.05                         |      |     |      |      |      |      |
| Response Time               | ms         | ≤20                           |      |     |      |      |      |      |
| Switching Mode              | 1          | Non-Latching                  |      |     |      |      |      |      |
| Handling Power              | mW         | ≤500                          |      |     |      |      |      |      |
| Drive Voltage               | V          | DC 5±10%                      |      |     |      |      |      |      |
| Operating Current           | mA         | ≤50                           |      |     |      |      |      |      |
| Operating Temperature       | $^{\circ}$ | -5~+70                        |      |     |      |      |      |      |
| Storage Temperature         | $^{\circ}$ | -40~+85                       |      |     |      |      |      |      |
| Operating Humidity          | %          | 5~95                          |      |     |      |      |      |      |
| Dimensions                  | mm         | 60*24*11                      |      |     |      |      |      |      |
| Control Interface           | /          | TTL or I2C or RS232           |      |     |      |      |      |      |

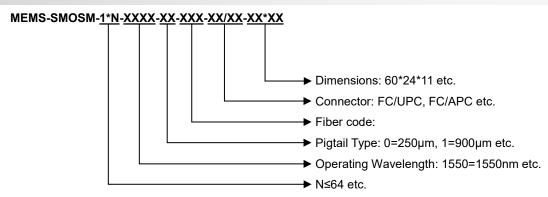
- 1. Specifications are without connectors.7. IL is 0.2dB higher and RL is 5dB lower for each connector added.
- 2. IL is measured at CWL, 23°C.
- 3. IL is for single-band. Dual-band adds 0.1dB.
- 4. Power off isolation is same as crosstalk.
- 5. WDL is measured in a +/- 20nm range at 23°C.
- 6. Repeatability is defined after 100 cycles.

## **Mechanical Dimension**





## **Pin Configuration**


| PIN | NAME FUNCTION |                                                    |  |  |
|-----|---------------|----------------------------------------------------|--|--|
| 1   | VDD           | Power Supply: +5V                                  |  |  |
| 2   | GND           | Ground                                             |  |  |
| 3   | PD1           | TTL Input : L<0.8V, 2.2V <h<3.3v< td=""></h<3.3v<> |  |  |
| 4   | PD2           | TTL Input: L<0.8V, 2.2V <h<3.3v< td=""></h<3.3v<>  |  |  |
| 5   | PD3           | TTL Input : L<0.8V, 2.2V <h<3.3v< td=""></h<3.3v<> |  |  |
| 6   | PD4           | TTL Input : L<0.8V, 2.2V <h<3.3v< td=""></h<3.3v<> |  |  |
| 7   | PD5           | TTL Input : L<0.8V, 2.2V <h<3.3v< td=""></h<3.3v<> |  |  |
| 8   | NC            | No Connection                                      |  |  |
| 9   | NC            | No Connection                                      |  |  |
| 10  | GND           | Ground                                             |  |  |
| 11  | RX            | Receive Data                                       |  |  |
| 12  | TX            | Transmission Data                                  |  |  |
| 13  | NC            | No Connection                                      |  |  |
| 14  | RST           | Reset system; Low=Operable                         |  |  |

## **Data Bit Switching Logic Table**

| PD5 | PD4 | PD3 | PD2 | PD1 | Channel |
|-----|-----|-----|-----|-----|---------|
| 0   | 0   | 0   | 0   | 1   | 1       |
| 0   | 0   | 0   | 1   | 0   | 2       |
| 0   | 0   | 0   | 1   | 1   | 3       |
| 0   | 0   | 1   | 0   | 0   | 4       |
| 0   | 0   | 1   | 0   | 1   | 5       |
| 0   | 0   | 1   | 1   | 0   | 6       |
| 0   | 0   | 1   | 1   | 1   | 7       |
| 0   | 1   | 0   | 0   | 0   | 8       |
|     |     |     |     | ••• | N       |

Note: Default reset on channel 1 after power-up

## **Ordering Information**

